Content

Building Geometry
Appearance
Lights
Model Loaders

Building Geometry

e A Geometry represents a 3D object:
e Mesh:
— The form or structure of a shape
(What to draw)
e Material:

— The color, transparency, and shading of a
shape.

(How to draw it)

TWi Feb 15

Geometry class methods

e Methods on Geometry set mesh and
material attributes

new Geometry(String name)

new Geometry(String name, Mesh mesh)

public void setMesh(Mesh mesh)
public void setMaterial (Material material)

e Need to set both mesh and material

TWi Feb 15

Defining Mesh for Geometry

* Three choices when creating mesh for
geometry:

1. Built in shapes (Box, Sphere, etc.)
2. Load 3D models (from 3ds max, blender, etc.)
3. Procedural generation

TWi Feb 15

Coordinate Order

* Polygons have a front and back face:

— By default, only the front side of a polygon 1s
rendered

— A polygon's winding order determines which
side 1s the front

— Most polygons only need one side rendered

— You can turn on double-sided rendering, at a
performance cost

TWi Feb 15

Using Coordinate Order

* JME uses a right-handed coordinate system

— The front of the polygon is determined by the
ordering of the vertices

— Counterclockwise ! \

0

-

TWi Feb 15

Defining Vertices

* A vertex describes a polygon and contains:
— A 3D coordinate (Xx,y, z)
— A color (1, g, b, a)
— A texture coordinate (u, v)
— A lighting normal vector (x, y, z)

* Only the 3D coordinate 1in a vertex 1s
required, the rest are optional

TWi Feb 15

Defining Vertices

e A vertex normal defines surface information
for lighting

— But the coordinate winding order defines the
polygon's front and back

e If you want to light your geometry, you
must specify vertex lighting normals

— Lighting normals must be unit length

TWi Feb 15

Building Meshes

e JME supports three types of geometric primitives:
— Points
— Lines

— Triangles

 The Mesh class have several derived subclasses that create specific
shapes:
— Boxes, cylinders, spheres
— Domes, pyramid, torus

— Surfaces or curves

TWi Feb 15

Defining vertices

e Non-Indexed

— Define vertices in singles, pairs or triples to build points, lines, and triangles one at
a time.

— Redundant coordinates, lighting normals, colors, and texture coordinates

e Indexed

— Indices are used along with the lists of coordinates, lighting normals, color and
texture coordinates

— Indices select which coordinates to use from each list
— Indices are also used for lighting normals, colors, and texture coordinates

— For surfaces, the same vertices are reused for adjacent lines and triangles, providing
an efficient use of vertex information

— No redundant coordinates in indexed geometry

TWi Feb 15

Building Meshes

e Non-indexed:
Vector3f[] vertices = new Vector3f[]{
new Vector3f(0, 1, 0), // red triangle

new Vector3f(0, 0, 0),
new Vector3f(1, 0, 0),
new Vector3f(l, 0, 0), // green triangle
new Vector3f(1, 1, 0),
new Vector3f(0, 1, 0),

}i

e Indexed:

Vector3f[] vertices = new Vector3f[]{ int[] indices = new int[]{
new Vector3f(0, 0, 0), 2, 0, 1, //red tri
new Vector3f(l, 0, 0), 1, 3, 2, //green tri
new Vector3f(0, 1, 0), }s
new Vector3f(1, 1, 0),

}i

TWi Feb 15

Building different types of meshes

* There are 8 different ways to represent the vertex data in the mesh:

- Points

- Lines

- LineStrip

— LineLoop

- Triangles

- TriangleStrip
- TriangleFan

- (Hybrid)

TWi Feb 15

Setting mesh data

* Mesh data is set through native buffers

void setBuffer (VertexBuffer.Type type, int components, java.nio.ByteBuffer buf);
void setBuffer (VertexBuffer.Type type, int components, java.nio.FloatBuffer buf);
void setBuffer (VertexBuffer.Type type, int components, java.nio.IntBuffer buf);

e VertexBuffer Types:
- Position
— Normal
— Index
— Color
- TexCoord
- +++

TWi Feb 15

Mesh Example

MeshExample.java

TWi Feb 15

Dynamic Mesh Example

MeshExample.java

TWi Feb 15

Render Modes Example

rameguffers (M
rameguffers
rameguffers
extures (M)
extures (F)
extures (S)

riangles
fertices

BoxRenderModes.java

TWi Feb 15

Appearance

Appearance

 How to control how JME renders an object?
— No Fixed Function Pipeline (FFP)

* You can only do what 1s defined in the pipeline

— JME 1s fully shader based (Programmable pipeline)
— Features built in shaders that "mimics" FFP

— This allows you can do almost anything you
want

TWi Feb 15

Example of shaders

Textured + Ambient Light + Directional Light + Shadows + Ambient Occlusion

&, Monkey Ergoe 30

FrameBuffers
FrameBuffers
FrameBuffers
[Textures (M)
[Textures (F)
[Textures (S)
Shaders (M)

an0n jMonkey Engine 3.0

mesutre
meBuTr:

Fixed Function Pipeline

Existing Fixed Function Pipeline

Source: krhonos.org
TWi Feb 15

Shaders

e What is a shader?

Program that executes on the GPU
Runs in parallel

Vertex Shader

Tesselation Shader

Geometry Shader

Fragment Shader

e GLSL

Introduced in OpenGL 2.0
Compiled by the driver at runtime

e There are other formats (HLSL, CG)

TWi Feb 15

Main program
(JMES3 java class)

Mesh data

A

y

Vertex Shader

Mesh data
+

Il Computed position

Fragment Shader

Pixel color

A

y

Display
(screen or texture)

Programmable Pipeline

Vertex liopi
Shader Clippies
________________ — y
ES2.0 Programmable Pipeline _Tfiifl_liﬂffl o
| Tessellation |
I Control :
'l Shader |
—_——— e y
J Fragment
| e —— -i Shader
: Tessellator 1
T _l__ - ———
—— | Fragment |
| Tessellation | | Tests |
| Evaluation : —
'l Shader |]
- —_—
------------------- | Framebuffer |
| Blending and |
| — Logichgi
et t ¥ -yl-
| Geometry ! 2
[!
: Shader | i
———— . - Masking

Write to
Framebuffer

Sources: krhonos.org and opengl.org

TWi Feb 15

Materials and Material Definitions

Materials control how JME renders geometry
Rendering specifications are set on the Material object

Materials are created/loaded from a Material Definition file
(j3md)

The rendering specifications in the material depends on the
Material Definition

Material Definition contains reference to one or more
shader programs (called Technique)

TWi Feb 15

Shader Programs

Written in a C-like syntax
— Supports loops and branching, but no recursion
— Supports user defined functions

— Contains data types such as vectors (vec3, ivec3, bvec3), matrices, textures (sampler2D) and
more

Three different type of scope for variables
— Uniforms, attributes, varying — (more on next slide)
— Note that these must always be declared globally
Vertex shader, transform vertex position to projection space

gl Position = g WorldViewProjectionMatrix * vec4 (inPosition, 1.0);

Fragment shader, set fragment (pixel) color
gl FragColor = vec4(0.0, 1.0, 0.0, 1.0);

World View Projection Matrix
World Matrix View Matrix Projection Matrix l
Object space ™ World space ™ View space ® Projection space
Also called Model space Well...The world Also called the camera Also called screen
Its origin is the center of the space space space (2D space)
object/model It's origin is the It's origin is the position It's origin is the center

center of the world of the camera of the screen

Shader Programs: Variable Scope

e Uniforms

User defined variables
Passed from main application and engine to shader
Global, and do not change for the given execution (rendering) of the shader

https://code.google.com/p/jmonkeyengine/source/browse/trunk/engine/src/core/com/jme3/
shader/UniformBinding.java

e Attributes

Per vertex, and only available in the vertex shader
Passed from engine to the shader

https://code.google.com/p/jmonkeyengine/source/browse/trunk/engine/src/core/com/jme3/
scene/VertexBuffer.java)

e Varying

Variables used for passing values from the vertex shader to the fragment shader
Read only in the fragment shader
Interpolated across the primitive

TWi Feb 15

Simple Shader Example

jMonkey Engine 3.0

Frames per-sécond: 354

SimpleShader.java

TWi Feb 15

Materials in jJME

JME contains several Material Definitions
— Located in jJME3-core.jar under “Common/MatDefs/*”

Most importantly contains two MatDefs that mimic FFP:
— .../MatDefs/Misc/Unshaded.j3md
— .../MatDefs/Light/Lighting.j3md

Overview over Different MaterialDefinitions and properties

— http://wiki.jmonkeyengine.org/doku.php/jme3:advanced:materials overview

The JME SDK features a Material editor

TWi Feb 15

Lights

Setting lights in a scene

Lights in JME

* IME offers 4 different light types for
lighting the scene.

— Ambient light
— Directional light
— Point light
— Spot light
e Or you can write your own equation in a
shader

TWi Feb 15

Light methods

e There are some methods that are common
tfor all light-types

— setEnable(boolean OnOff), turn lights on off

— Color, setColor

e Lights are added to Spatial in the scene
— Where you add it determines what 1s influenced

— Use this both for creating effects and increasing
performance

TWi Feb 15

Ambient Light

e General brightness/color of the objects

AmbientLight al = new AmbientLight () ;
al.setColor (ColorRGBA.White. mult(O.Sf));
rootNode.addLight (al) ; ‘ |

TWi Feb 15

Directional Light

e Lightin a direction, infinitely far away (the sun)

Directionallight sun = new DirectionalLight ()
sun.setColor (ColorRGBA.White) ;

sun.setDirection (new Vector3f(0.0f, -1.0f, 0.0f)
.normalizelLocal ());

rootNode.addLight (sun) ;

TWi Feb 15

Point Light

e All directions, decreasing intensity (almost like a "light bulb")

PointLight
lamp light

lamp light

lamp light = new PointLight();

.setColor (ColorRGBA.Yellow) ;
lamp light.
.setRadius (10f) ;

rootNode.addLight (lamp light);

TWi Feb 15

Spot Light

e Direction, position, and two angles (flashlight)

SpotLight spot = new SpotLight () ;
spot.setSpotRange (100f) ;

spot.setSpotInnerAngle (15f * FastMath.DEG TO RAD);

spot.setSpotOuterAngle (35f * FastMath DEG TO RAD)'
spot.setColor (ColorRGBA.White) ;

spot.setPosition (
new Vector3f (0, 5, 0));
spot.setDirection (
new Vector3f (0, -1, 0)
.normalizelocal())
rootNode.addLight (spot) ;

TWi Feb 15

Lights and Scope

Every Spatial has a list of lights
The 1nfluence of lights are limited to the subgraph of the
Spatial

Add lights that should influence whole scene directly to the
root

Add lights that only influence parts at the topmost Spatial

TWi Feb 15

Lighting Material

e Supports FFP lighting (and more)

Material mat = new Material (assetManager, "Common/MatDefs/Light/
Lighting.j3md");

mat.setColor("Ambient", new ColorRGBA(0.3f, 0.3f, 0.3f, 1.0f));

mat.setColor("Diffuse", new ColorRGBA (0.5f, 0.5f, 0.5f, 1.0f));

mat.setColor("GlowColor", new ColorRGBA (0.0f, 0.0f, 0.0f, 0.0f));

mat.setColor("Specular", new ColorRGBA (0.8f, 0.8f, 0.8f, 1.0f));

mat.setFloat("Shininess", 64.0f);

// This controls whether material color or light color should be used
mat.setBoolean("UseMaterialColors", true); // default false

geom.setMaterial (mat);

TWi Feb 15

Light example

LightExample.java

TWi Feb 15

Diffuse Shader Example

DiffuseShaderEXample.java

TWi Feb 15

Transparency

e Transparency controls
— The amount of transparency depends on alpha value

— Alpa value [0.0f, 1.01]
— Transparency modes

TWi Feb 15

Transparency (blend) Modes

source = value from fragment shader
destination = value from framebuffer

°Opaque (no blend mode)

°Alpha (Result = Source Alpha * Source Color + (1 - Source Alpha) * Dest Color)
e Additive (Result = Source Color + Destination Color)

°Alpha additive (Result = (Source Alpha * Source Color) + Dest Color)
eModulate (Result = Source Color * Dest Color)

eModulate X2 (Result = 2 * Source Color * Dest Color)

°PremultA1pha (Result = Source Color + (Dest Color * (1 - Source Alpha)))

eColor (Result = Source Color + (1 - Source Color) * Dest Color)

TWi Feb 15

Transparency example

TransparencyExample.java

TWi Feb 15

Color Keying example

ColorKeyingExample.java

TWi Feb 15

Model Loaders

Use of loaders

[.oaders

Oficially there only exists loaders for some file formats

— Ogre DotScene (animated objects, scenes)
— Ogre Mesh XML
— Wavefront OBJ (static objects, scenes)

Other unofficial loaders exist (might not be up to date)
— COLLADA

— MD5

JME want to focus officially supported loaders to only a
few

We will use Ogre DotScene

TWi Feb 15

Ogre DotScene

e Standardized XML file format

e Describes a scene
— Meshes
— Materials
— Lights
— Level of detail
e Animation

TWi Feb 15

Ogre DotScene

Meshes are exported as .mesh.xml
Materials as .material
Animations as .skeleton.xml

Scenes as . scene

The .scene file "binds things together"

For example: Mesh <-> Material

TWi Feb 15

Converting models to Ogre
DotScene

Blender 2.62 (free) or Maya

Import model, any format the editor
supports

Export model as Ogre DotScene

See guide for installing and setting up
Blender with export script correctly

Why doesn’t the loaded model work?

TWi Feb 15

Using the Ogre DotScene Loader

Extracts JME spatials from the scene file
— Geometry
— Lights
— Skeleton

— Animations

e Traverse the loaded graph to access named objects and manipulate
them

* Add to scene graph

e Topmost node in loaded subgraph is usually a node

TWi Feb 15

“Debugging” loaded models

Spatial model = assetManager.loadModel("models/standing man.scene");

model .depthFirstTraversal (new SceneGraphVisitor() {
@Override
public void visit(Spatial spatial) {
if (spatial instanceof Geometry) {
// turn off face culling.
((Geometry)spatial).getMaterial().getAdditionalRenderState().
setFaceCullMode (RenderState.FaceCullMode.Off);

})s

rootNode.attachChild(model);

TWi Feb 15

JME3 specific tormats

Binary 3D model or scene (.j30)
Optimized format

Convert them using the J]ME SDK
— (you don’t have to do this)

Use this for release builds

LLoad models during development

TWi Feb 15

Loader Example

LoaderExample.java

TWi Feb 15

