Introduction to jMonkeyEngine

What 1s jMonkeyEngine?
A JME Application
Scene graphs
Coordinate systems

What 1s jMonkeyEngine?

 JME 1s a game engine made for developers who
want to create 3D games and other visualisation
applications tollowing modern technology
standards

 Uses Java and 1s plattorm independent. Can
deploy to Windows, Mac, Linux, Android and
10S.

* OpenSource, non-profit, New BSD License

TWi Feb 15

Features of jMonkeyEngine

 Has integrated tools to make it easier to create
games and applications

— Physics integration

— Special effects (pre/post processing, particles)
— Terrain-, Vegetation-, Water-systems-++

— Graphical User Interface

— Networking

TWi Feb 15

Showcase

e http://www.youtube.com/watch?
v=eRCY9FDin5dA&feature=player_embedded

* http://jmonkeyengine.org/showcase/

TWi Feb 15

s S i | Saiph S o
- Guardian 2 4 S .- . Warrior2 P A R =2 ;’1 1) (w5) @

Type: Chameter

Team: 2 W

Job: RariigdAttack
¥

face tile cam follow patrol path

remove edge build

TWi Feb 15

Playtime round 1 display
14 Jan 2013 Normal

A

area

Stupid Neutral Ronin

Ak X @ M &
®0/3 0 0 0 .

25 e
K [)‘-o_, 4

Messages (1 New)

—— L. | PN
o — N 05
)- P, SR — — e
Student Housing f' ' 3 A Ta W . f" ' . SRR ~ —
Achievement & ittt | .) ‘ Ay ol new ¥ X)
i -)
e o o SNESSIN
. y . 2 L < =i B

A
o

HEW MESSAGE

TWi Feb 15

Why use a high level API?

Faster development process
Not necessary to reinvent the wheel

Provides abstraction from the low level:
— Think Objects.... Not vertices

— Think content...not rendering process.

Not necessary to tell when to draw, just tell what to draw

— Retained mode

This does not mean you do not need to understand what 1s
going on underneath

This 1s a programming course

TWi Feb 15

What does jME do?

Uses OpenGL, and features a modern shader based architecture
(GLSL)

Organises your scene with a scene graph data structure
Transformations and mathematics
JME performs rendering optimisations

— View frustum culling
— State sorting
— Batching

JME 1s single threaded

jME 1s NOT thread safe. Only modify the scenegraph from the
rendering thread.

TWi Feb 15

Applications of IME

Games
Education

Scientific visualisation
Information visualisation
Geographic Information Systems (GIS)

Computer-aided design(CAD)
Animation

TWi Feb 15

Getting started

e Software:

— Java 6 or later
— Latest version of JME3 SDK

— LWIJGL for communicating with OpenGL

— Latest version of graphics drivers

e Hardware:
— Hardware-accelerated graphics card required

* Must support OpenGL 2 or newer
* Must support GLSL (shader)

* Note: Do not use earlier versions of JME (< 3.0)

TWi Feb 15

Getting started

e Documentation:
— Website: http://imonkeyengine.org/

— Wiki: http://wiki.jmonkeyengine.org/doku.php/jme3

— Books:

* jMonkeyEngine 3.0 Beginner’s Guide
e jMonkeyEngine 3.0 Cookbook

TWi Feb 15

Development environment

e iME SDK
— Built on top of Netbeans IDE
— Aims to be similar to editor environments like the UDK

e (Other IDE’s

— Netbeans
— Intell1]

— Eclipse

— Text editor + command line

e Use the IDE of your choice

TWi Feb 15

A JME application

SimpleApplication

* The base tor most JME applications

e G1ves you access to standard game features
such as

— scene graph (rootNode)

— an asset manager

— a user 1nterface (guiNode)
— Input manager

— fly-by camera

TWi Feb 15

SimpleApplication

You should inherit from Simple Application

You initialise your data by overriding
public void simpleInitApp()

You have to add your subgraph to the rootNode to
make 1t visible

Get a callback 1n the rendering thread by

overriding
public void simpleUpdate(float tpf)

TWi Feb 15

Hello World

rameguffers
rameguffers
rameguffers

Hello3D.java

TWi Feb 15

Bypassing SimpleApplication

It 1s possible
You lose functionality
Only necessary if you have specific requirements

You can unload everything added by
Simple Application

"Simple" means nothing more than necessary

TWi Feb 15

Scene graphs

What 1s a scene graph
Scene graphs in JIME

What 1s a scene graph

* A data structure containing all the data
needed to render the scene

 More specifically 1t is a tree data structure

e Commonly used 1n 3D applications and
vector based graphics

TWi Feb 15

What 1s a scene graph

JME renders the scene graph automatically to the screen
If you want something visible, add it to the graph

A scene graph 1s a transtform hierarchy

Two types of nodes:
— Group nodes
— Leaft nodes

All nodes contains:

— Transform
— Parent

— (Children)

TWi Feb 15

What 1s a scene graph

e Organize the scene logically and spatially

 Ease of operations such as transtormation,
visibility etc.

e Optimizations for picking, culling, etc.

Scene Graph:

What 1s a scene graph

 To outline a scene graph can help to clarify

a design and ease the development ot
software

* Better performance with good organisation

TWi Feb 15

TWi Feb 15

Scene graphs in JME

 Every node in JME’s scene graph 1s a
Spatial

e Spatial contains:

—Transformation (more on this later)
—Parent (Node)

TWi Feb 15

Scene graphs in JME

Spatial 1s an abstract class
Two classes inherit Spatial: Node and Geometry

Geometry represent visible objects 1n the scene

— Mesh (geometry) and Material (rendering properties)
— Can only be children and leaf nodes

Node is an "1nvisible” object, used tor grouping
objects

— Children (Spatials)

— Can be both parent and children

TWi Feb 15

Scene graphs in JME
e Spatials also contain:

— List of Lights
— List of Controls (Behaviors)

e QOther APIs might implement Light, Behaviors etc. as
scene graph objects

TWi Feb 15

Scene graphs in JME

e This 1s what the scene graph would look like in JME:

TWi Feb 15

Scene graphs in JME

 We create nodes by instantiating JME classes

Geometry planeBody = new Geometry("planeBody",
planeBodyMesh);

Geometry leftWing = new Geometry("leftWing");

* We modity the nodes by using methods on an

Instance.
leftWing.setMesh(wingMesh);

e Build groups with nodes

Node plane = new Node(”plane”);
plane.attachChild(planeBody);
plane.attachChild(leftWing);

TWi Feb 15

Coordinate systems and
transtormations

Coordinate systems

e All spatials share a common world coordinate
system

e A Spatial creates a new local coordinate system.
This 1s relative to the parent

— Translation (position) sets the relative position
— Rotation sets the relative rotation
— Scale sets the relative size

e [f you transform the parent system, all the children
moves with 1t

TWi Feb 15

Using the coordinate system

* Every part 1s built into their own local
coordinate system

TWi Feb 15

Using the coordinate system

* When these parts are assembled, this
transposes the childrens shapes into the
parents coordinate system

TWi Feb 15

Using the coordinate system

* And so on, until we have built the plane

TWi Feb 15

Transtormations

 Every spatial has a Transform component

 The Transtorm represents the translation,
rotation and scale of the spatial

TWi Feb 15

Identity

* By using the method loadldentity(), the
transform 1s set to Identity

— No translation in X, Y or Z

— No rotation
— A scale factorof 1 on X, Y and Z

TWi Feb 15

Positioning in a coordinate system

* A vector moves the coordinate system

— Right-hand coordinate system
— A Vector3f holds the X.Y and Z distance

TWi Feb 15

Translation example code

 Build the geometry

Geometry geom = new Geometry('"geom", mesh);

 To move the geometry +1.0f in the x-direction we

need a Vector3f
Vector3f trans = new Vector3f(1.0f, 0.0f£,0.0f);

* This translation must be applied to the geometry

geom.setLocalTranslation(trans);

TWi Feb 15

.:/
\
3

.
i\

_\' I\ A
MN,_N._

Rotate a coordinate system

e Rotate around x,y or z and an axis

e Rotate around axis

Rotation, simple example

* (Create the geometry

Geometry geom = new Geometry(' 'geom", mesh);

 Develop a 3D Transtorm for rotation around y-

axis 45 degrees.

Quaternion quat = new Quaternion();

quat.fromAngleNormalAxis((float)Math.PI/4,
Vector3f.UNIT Y);

* Set the rotation to the geometry
geom.setLocalRotation(quat);

TWi Feb 15

Scaling a coordinate system

* By scaling we increase or decrease the size of a
coordinate system and the shapes to the coordinate

system
— Normal scale 1s 1.0f

— To scale equally much 1n x, y and z we can scale with a
simple scale factor

void setLocalScale (float scale);

— Or we can use individually scaling factors for each axis

volid setLocalScale (Vector3f scale);

TWi Feb 15

Scaling, example code

* (reate the geometry
Geometry geom = new Geometry('geom", mesh);

 (reate a Vector3t to scale with different values 1n the x.y
and z axis

Vector3f scale = new Vector3f(1.3f, 0.5f, 1.0f);

* Set the local scale for the geometry

geom.setLocalScale(scale);

TWi Feb 15

Modification of parts of transtorm

 Modification of parts of an existing transtom
— The other parts of the transform 1s untouched

— Is used to combine translation, rotation and
scaling

volid setTranslation(float x, float y, float z);
volid setTranslation(Vector3f trans);

volid setRotation(Quaternion quat);

volid setScale(float scale);

volid setScale(Vector3f scale);

TWi Feb 15

Trantorm points

e It 1s possible to transform points from one
coordinate system to another

Vector3f transformVector(Vector3f in,
Vector3f store)

* IME uses Vector3t to represent both points
and vectors.

TWi Feb 15

Hello Rotation

rameguffers (M)
rameeuftfers (F)
rameguffers (S)

HelloRotation.java

TWi Feb 15

