
Introduction to jMonkeyEngine
 What is jMonkeyEngine?

A jME Application
 Scene graphs

 Coordinate systems

•  jME is a game engine made for developers who
want to create 3D games and other visualisation
applications following modern technology
standards

•  Uses Java and is platform independent. Can
deploy to Windows, Mac, Linux, Android and
iOS.

•  OpenSource, non-profit, New BSD License

TWi Feb 15

What is jMonkeyEngine?

•  Has integrated tools to make it easier to create
games and applications
–  Physics integration
–  Special effects (pre/post processing, particles)
–  Terrain-, Vegetation-, Water-systems++
–  Graphical User Interface
–  Networking

TWi Feb 15

Features of jMonkeyEngine

Showcase
•  http://www.youtube.com/watch?

v=eRC9FDin5dA&feature=player_embedded

•  http://jmonkeyengine.org/showcase/

TWi Feb 15

TWi Feb 15

TWi Feb 15

TWi Feb 15

Why use a high level API?
•  Faster development process
•  Not necessary to reinvent the wheel
•  Provides abstraction from the low level:

–  Think Objects…. Not vertices
–  Think content… not rendering process.

•  Not necessary to tell when to draw, just tell what to draw
–  Retained mode

•  This does not mean you do not need to understand what is
going on underneath

•  This is a programming course

TWi Feb 15

What does jME do?
•  Uses OpenGL, and features a modern shader based architecture

(GLSL)
•  Organises your scene with a scene graph data structure
•  Transformations and mathematics
•  jME performs rendering optimisations

–  View frustum culling
–  State sorting
–  Batching

•  jME is single threaded
•  jME is NOT thread safe. Only modify the scenegraph from the

rendering thread.

TWi Feb 15

Applications of jME
•  Games
•  Education
•  Scientific visualisation
•  Information visualisation
•  Geographic Information Systems (GIS)
•  Computer-aided design(CAD)
•  Animation

TWi Feb 15

Getting started
•  Software:

–  Java 6 or later
–  Latest version of jME3 SDK
–  LWJGL for communicating with OpenGL
–  Latest version of graphics drivers

•  Hardware:
–  Hardware-accelerated graphics card required

•  Must support OpenGL 2 or newer
•  Must support GLSL (shader)

•  Note: Do not use earlier versions of jME (< 3.0)

TWi Feb 15

Getting started

•  Documentation:
–  Website: http://jmonkeyengine.org/
–  Wiki: http://wiki.jmonkeyengine.org/doku.php/jme3
–  Books:

•  jMonkeyEngine 3.0 Beginner’s Guide
•  jMonkeyEngine 3.0 Cookbook

TWi Feb 15

Development environment
•  jME SDK

–  Built on top of Netbeans IDE
–  Aims to be similar to editor environments like the UDK

•  Other IDE’s
–  Netbeans
–  IntelliJ
–  Eclipse
–  …
–  Text editor + command line

•  Use the IDE of your choice

A jME application

SimpleApplication

•  The base for most jME applications
•  Gives you access to standard game features

such as
–  scene graph (rootNode)
–  an asset manager
–  a user interface (guiNode)
–  input manager
– fly-by camera

TWi Feb 15

SimpleApplication

•  You should inherit from SimpleApplication
•  You initialise your data by overriding

public void simpleInitApp()

•  You have to add your subgraph to the rootNode to
make it visible

•  Get a callback in the rendering thread by
overriding

public void simpleUpdate(float tpf)

TWi Feb 15

Hello World

TWi Feb 15

Hello3D.java

Bypassing SimpleApplication

•  It is possible
•  You lose functionality
•  Only necessary if you have specific requirements
•  You can unload everything added by

SimpleApplication
•  "Simple" means nothing more than necessary

TWi Feb 15

Scene graphs

What is a scene graph
Scene graphs in jME

TWi Feb 15

What is a scene graph

•  A data structure containing all the data
needed to render the scene

•  More specifically it is a tree data structure
•  Commonly used in 3D applications and

vector based graphics

TWi Feb 15

What is a scene graph
•  jME renders the scene graph automatically to the screen
•  If you want something visible, add it to the graph
•  A scene graph is a transform hierarchy
•  Two types of nodes:

–  Group nodes
–  Leaft nodes

•  All nodes contains:
–  Transform
–  Parent
–  (Children)

What is a scene graph

•  Organize the scene logically and spatially
•  Ease of operations such as transformation,

visibility etc.
•  Optimizations for picking, culling, etc.

TWi Feb 15

TWi Feb 15

What is a scene graph

•  To outline a scene graph can help to clarify
a design and ease the development of
software

•  Better performance with good organisation

TWi Feb 15

TWi Feb 15

Scene graphs in jME

•  Every node in jME’s scene graph is a
Spatial

•  Spatial contains:
– Transformation (more on this later)
– Parent (Node)

TWi Feb 15

Scene graphs in jME

•  Spatial is an abstract class
•  Two classes inherit Spatial: Node and Geometry
•  Geometry represent visible objects in the scene

–  Mesh (geometry) and Material (rendering properties)
–  Can only be children and leaf nodes

•  Node is an ”invisible” object, used for grouping
objects
–  Children (Spatials)
–  Can be both parent and children

TWi Feb 15

Scene graphs in jME

•  Spatials also contain:
–  List of Lights
–  List of Controls (Behaviors)

•  Other APIs might implement Light, Behaviors etc. as
scene graph objects

TWi Feb 15

Scene graphs in jME
•  This is what the scene graph would look like in jME:

TWi Feb 15

Scene graphs in jME

•  We create nodes by instantiating jME classes
Geometry planeBody = new Geometry(”planeBody",
planeBodyMesh);

Geometry leftWing = new Geometry(”leftWing");

•  We modify the nodes by using methods on an
instance.

leftWing.setMesh(wingMesh);

•  Build groups with nodes
Node plane = new Node(”plane”);
plane.attachChild(planeBody);
plane.attachChild(leftWing);
...

Coordinate systems and
transformations

Coordinate systems
•  All spatials share a common world coordinate

system
•  A Spatial creates a new local coordinate system.

This is relative to the parent
–  Translation (position) sets the relative position
–  Rotation sets the relative rotation
–  Scale sets the relative size

•  If you transform the parent system, all the children
moves with it

TWi Feb 15

TWi Feb 15

Using the coordinate system

•  Every part is built into their own local
coordinate system

TWi Feb 15

Using the coordinate system

•  When these parts are assembled, this
transposes the childrens shapes into the
parents coordinate system

TWi Feb 15

Using the coordinate system

•  And so on, until we have built the plane

Transformations

•  Every spatial has a Transform component
•  The Transform represents the translation,

rotation and scale of the spatial

TWi Feb 15

TWi Feb 15

Identity

•  By using the method loadIdentity(), the
transform is set to Identity
– No translation in X, Y or Z
– No rotation
– A scale factor of 1 on X, Y and Z

TWi Feb 15

Positioning in a coordinate system

•  A vector moves the coordinate system
– Right-hand coordinate system
– A Vector3f holds the X,Y and Z distance

TWi Feb 15

Translation example code

•  Build the geometry
Geometry geom = new Geometry("geom", mesh);

•  To move the geometry +1.0f in the x-direction we
need a Vector3f

Vector3f trans = new Vector3f(1.0f, 0.0f,0.0f);

•  This translation must be applied to the geometry
geom.setLocalTranslation(trans);

TWi Feb 15

Rotate a coordinate system

•  Rotate around x,y or z and an axis
•  Rotate around axis

TWi Feb 15

Rotation, simple example
•  Create the geometry
Geometry geom = new Geometry("geom", mesh);

•  Develop a 3D Transform for rotation around y-
axis 45 degrees.

Quaternion quat = new Quaternion();
quat.fromAngleNormalAxis((float)Math.PI/4,

Vector3f.UNIT_Y);

•  Set the rotation to the geometry
geom.setLocalRotation(quat);

TWi Feb 15

Scaling a coordinate system

•  By scaling we increase or decrease the size of a
coordinate system and the shapes to the coordinate
system
–  Normal scale is 1.0f
–  To scale equally much in x, y and z we can scale with a

simple scale factor
void setLocalScale (float scale);

–  Or we can use individually scaling factors for each axis
void setLocalScale (Vector3f scale);

TWi Feb 15

Scaling, example code
•  Create the geometry

Geometry geom = new Geometry("geom", mesh);

•  Create a Vector3f to scale with different values in the x.y
and z axis

Vector3f scale = new Vector3f(1.3f, 0.5f, 1.0f);

•  Set the local scale for the geometry
geom.setLocalScale(scale);

TWi Feb 15

Modification of parts of transform

•  Modification of parts of an existing transfom
– The other parts of the transform is untouched
–  Is used to combine translation, rotation and

scaling
void setTranslation(float x, float y, float z);
void setTranslation(Vector3f trans);
void setRotation(Quaternion quat);
void setScale(float scale);
void setScale(Vector3f scale);

TWi Feb 15

Tranform points

•  It is possible to transform points from one
coordinate system to another

Vector3f transformVector(Vector3f in,
Vector3f store)

•  jME uses Vector3f to represent both points
and vectors.

Hello Rotation

TWi Feb 15

HelloRotation.java

