
Optimisation

An overview of
strategies and methods for

attaining sufficient performance

Contents	

•  Minimising lag	

•  Graphics pipeline	

•  Culling algorithms	

•  Managing the scene	

•  Polygon reduction	

•  Level of detail	

•  Mathematical representations	

•  Billboards	

•  Optimisation Tools	

8/11/2013	

 MLo Nov 2013	

Minimising Lag	

•  Need to ensure that system lag is kept to a
minimum to achieve interactive and comfortable
3d environments	

•  Lag is time it takes between a change being
effected on a virtual environment and the result
being reflected on the display	

–  Transport delays (input-output)	

•  system takes a while to respond to user input	

–  Frame rate (rendering & processing)	

8/11/2013	

 MLo Nov 2013	

System lag	

•  System lag is cumulative effect of input-
output, processing & rendering delays	

•  Effects of Lag	

– Degraded user performance	

– Degraded sense of presence	

– Motion sickness	

8/11/2013	

 MLo Nov 2013	

Target platform considerations	

•  When designing a virtual environment consider what the

minimum target platform is	

–  Don’t assume “high-end” graphics features!	

•  Decide what the minimum frame rate should be for the
minimum platform	

–  The do your best to achieve it!	

–  A frame rate less than 8-10 fps on the minimum target platform is

rarely acceptable	

•  Design to degrade gracefully in order to maximise the

number of potential users	

8/11/2013	

 MLo Nov 2013	

Graphics pipeline	

•  The parts of the pipeline runs in paralell	

•  Where is the bottleneck?	

8/11/2013	

 MLo Nov 2013	

CPU	

RAM	

Vertex
processor	

Pixel
processor	

VRAM	

Graphics Card	

Graphics	

bus	

Graphics pipeline	

•  CPU limited	

–  Starving GPU while busy with physics, AI etc	

•  Graphics bus limited	

–  Transferring coordinates and textures every frame	

•  Vertex limited	

–  High triangle count	

–  Expensive vertex shaders	

•  Fill-rate limited	

–  Overdraw	

–  Expensive pixel shaders	

8/11/2013	

 MLo Nov 2013	

Graphics pipeline	

•  GPU profilers can be used to determine bottlenecks	

•  Available from hardware manufacturers	

–  AMD GPU PerfStudio	

–  Intel Graphics Performance Analyzer	

–  NVIDIA PerfHUD	

•  Some may only support D3D	

•  Tip to check if fill-rate limited	

–  Change window size	

–  At least partly fill-rate limited if frame-rate differs	

–  Bottleneck can change within a single frame	

8/11/2013	

 MLo Nov 2013	

Culling Algorithms	

•  Determines what faces or objects are invisible	

–  Culled objects are not drawn	

•  Back-face culling	

–  Triangles not facing the camera are culled	

•  View frustum culling	

–  Checks bounding volume against view frustum	

–  Implemented in jME and most scenegraph APIs	

8/11/2013	

 MLo Nov 2013	

Culling Algorithms	

•  Portal culling	

– Cells connected threw portals	

– Cells are clipped against portals to determine

which is visible	

	

	

8/11/2013	

 MLo Nov 2013	

CEFH are visible	

Culling algorithms	

•  Potentially visible set (PVS)	

– Each cell has a precalculated list of which other

cells a potentially visible	

•  Occlusion culling	

– First draw occluders	

– Then draw simplified version of occluded

object to determine if it is invisible	

8/11/2013	

 MLo Nov 2013	

Think about Geometry	

•  The renderer does a lot of work for us in trying to update

our virtual environments	

–  by giving it hints, we can dramatically increase it's ability to run

smoothly	

–  most obvious place to start is by looking at the geometry	

•  In most cases should try to use as few polygons as possible
in models	

–  Exception to this is very large objects which should be spatially

subdivided if they are typically only seen partially by the user	

–  Models that are exported from CAD systems and some 3D

modelling systems often have far more polygons than necessary
and should be reduced	

8/11/2013	

 MLo Nov 2013	

Managing the scene	

•  Assist the renderer	

–  Organising the scene correctly to help the culling code to remove
unseen objects	

–  Minimising memory use through reuse of objects	

–  (Using fog to hide culling activities if necessary)	

•  Help the renderer and reduce processing	

–  Subdivide the world and minimise processing as appropriate	

–  Turn off processing that has no effect on what the user can see

(e.g. disable controls on objects that are not visible)	

–  Implement level-of-detail techniques	

8/11/2013	

 MLo Nov 2013	

Managing Textures	

•  Use textures instead of modelling lots of detail	

–  but note that many large textures (1024x1024 or larger) will also
affect performance	

–  keep them as small as possible and note that most renderers work
most efficiently with textures that have powers of 2 sizes	

•  Multiple-resolution textures (MIPMAPs) are slower to
load because textures need to be processed, but offer more
attractive textures and often run faster	

–  Similar to level-of-detail (more on this later)	

8/11/2013	

 MLo Nov 2013	

Polygon Reduction	

•  Goal: Reduce the amount of geometry while
maintaining a target level of detail	

8/11/2013	

 MLo Nov 2013	

Polygon Reduction	

•  Polygon reduction has a couple of important uses related to

improving the performance of a geometry:	

–  Create multiple “levels of detail”	

–  Take large inefficient geometries and (hopefully) simplify them

without sacrificing significant detail	

–  Both are related since the measure of 'significant detail' is often a

function of what can be perceived by the user	

•  Often there are details in a model that do not contribute to

the perceived appearance of the model	

–  Especially models exported from tools not designed for “low-

polygon” modelling	

8/11/2013	

 MLo Nov 2013	

Polygon Reduction	

8/11/2013	

 MLo Nov 2013	

Polygon Reduction	

8/11/2013	

 MLo Nov 2013	

Polygon Reduction	

•  Most polygon reduction algorithms attempt to
collapse edges using various criteria to determine
the order in which the edges should be collapsed	

•  By repeating the process many times on a model,
it can be reduced to any target level	

–  A couple of other techniques will be mentioned in the

section on level of detail later in the lecture	

8/11/2013	

 MLo Nov 2013	

Polygon Reduction	

•  Algorithms that are commonly used (often in
combination) include:	

–  Remove smallest triangles	

–  Remove smallest edges	

–  Merge parallel edges	

•  Good polygon reduction tools/algorithms will take
into account colour boundaries and texture maps
in addition to attempting to maintain the overall
form of the geometry	

8/11/2013	

 MLo Nov 2013	

Polygon Reduction	

•  Shading also plays a significant purpose in
helping us to keep the polygon count low	

•  A rounded object with smooth shading will
often look much nicer (and use fewer
polygons) than a similar flat-shaded object
that attempts to use a large number of
polygons to approximate roundness.	

8/11/2013	

 MLo Nov 2013	

Level of Detail	

•  Can be implemented by a Node having
children with different amounts of detail	

•  Then hide all but on of the children	

•  Use Spatial.setCullHint(CullHint) to hide or

show a subgraph	

8/11/2013	

 MLo Nov 2013	

8/11/2013	

 MLo Nov 2013	

Level of detail: Example	

8/11/2013	

 MLo Nov 2013	

Level of detail	

•  There are five principle criteria in common use for

modulating level of detail	

1.  Distance - object’s LOD is based on distance from observer	

2.  Size - object’s LOD is based on the pixel size on the display

device	

3.  Eccentricity - object’s LOD is based upon the degree to which it

exists in the periphery of the display	

4.  Velocity - object’s LOD is based on it's velocity relative to the

observer (across the display device)	

5.  Fixed frame rate - object’s LOD is modulated to achieve and

maintain a prescribed frame-rate for the simulation	

Level of detail	

•  Ideally, the switch between levels of detail for an
object should not be noticed by the user	

–  This is quite difficult to achieve well in practice	

•  Some try to morph between LODs or fade between them to
reduce the “popping effect” of switching LODs	

–  Fading can be achieved by animating transparency	

•  Tip: In general, do not switch to/from less detailed
levels of detail too early	

–  The popping effect that may result can be disorientating

for the user	

8/11/2013	

 MLo Nov 2013	

Level of detail	

•  Research issues also include methods for
producing simplified geometry efficiently	

•  Automatically simplified geometries are typically
created using one of the following strategies:	

–  geometry removal – removing vertices or polygons

from objects	

–  sampling – attempting to create a model that fits a

sample of an object's geometry (i.e. it’s “shape”)	

–  adaptive subdivision – refining a simplified model by

subdividing the model where it varies from the original	

8/11/2013	

 MLo Nov 2013	

Level of detail	

•  Not only geometry, but textures and materials can
be varied at different detail levels to improve
performance	

–  e.g. removing specular highlights from materials and

using low-resolution textures at a distance	

•  LOD techniques are especially important to terrain

visualisation	

8/11/2013	

 MLo Nov 2013	

Level of Detail References	

•  Book: Level of Detail for 3D Graphics	

–  D. Luebke, M. Reddy, J. Cohen, A. Varshney, B.

Watson, and R. Huebner	

•  Thesis: Perceptually Modulated Level of Detail

for Virtual Environments	

–  Martin Reddy’s PhD thesis (freely available)	

–  Especially Chapters 1 and 2	

•  includes a general overview of system lag, level of detail
strategies, and level of detail generation	

8/11/2013	

 MLo Nov 2013	

Mathematical Representation	

•  NURBS, fractals, etc.	

•  Compact representation	

–  Can load quickly	

–  Use little memory when not in use	

•  Require effort to dynamically generate polygonal
representations at run-time	

–  Typically require faster hardware	

•  Especially if continuously updated	

–  Very effective if not too many of them	

8/11/2013	

 MLo Nov 2013	

Billboards	

•  A billboard is a (typically flat) shape that is always

oriented towards the user	

–  it rotates automatically around a user-specified axis to face the user	

•  Much used to add scenery to models in a CPU-efficient
manner (e.g. people and trees)	

•  Wide variety of other uses	

–  help messages and “signposts”	

–  text annotations	

–  status or info displays	

8/11/2013	

 MLo Nov 2013	

8/11/2013	

 MLo Nov 2013	

Billboards

Optimisation tools	

•  Tools exist to assist in the task of reducing
polygons	

–  for creating levels of detail	

– For simplifying models exported from CAD

systems so the target system can cope with the
model in real-time	

•  Some 3D modelling systems have polygon
optimisation tools built-in	

8/11/2013	

 MLo Nov 2013	

Summary	

•  Minimising system lag is important	

•  Try to find the bottleneck before optimising	

•  Managing the scene geometry can play an important role

in reducing lag	

•  Polygon reduction often necessary to prepare models for

interactive 3D use	

•  Switch-techniques including LOD are useful for scene

geometry management	

•  Billboards can be a useful alternative to complex geometry

in some situations	

8/11/2013	

 MLo Nov 2013	

