
User Interaction
Input Handling

Cameras
Picking

Separating application logic

Input Handling	

InputManager	

•  Field of SimpleApplication	

•  Handles input from 	

– Mouse	

– Keyboard	

–  Joystick	

•  Is event driven, listen and take action
accordingly	

TWi Oct 13	
10/14/2013	

InputManager	

•  Input triggers	

–  Key press or mouse action	

!new KeyTrigger(KeyInput.KEY_P)	

•  Different types of triggers	

–  KeyTrigger	

–  MouseAxisTrigger	

–  MouseButtonTrigger	

–  JoyAxisTrigger	

–  JoyButtonTrigger	

TWi Oct 13	
10/14/2013	

InputManager	

•  Input Mappings	

–  String name (case sensitive)	

–  One or more triggers	

	

inputManager.addMapping("Pause Game", !
 new KeyTrigger(KeyInput.KEY_P));!
inputManager.addMapping(MoveUpDown, !
 !new MouseAxisTrigger(MouseInput.AXIS_Y, true),!

!new MouseAxisTrigger(MouseInput.AXIS_Y, false));!

TWi Oct 13	
10/14/2013	

InputManager	

•  Add input listeners to handle input	

!inputManager.addListener(actionListener, "Pause Game");!

•  Listener types:	

–  ActionListener (on/off)	

public void onAction(String name, boolean keyPressed, float tpf)!

–  AnalogListener (continious)	

public void onAnalog(String name, float value, float tpf)!

–  TouchListener (touch devices)	

Public void onTouch(String name, TouchEvent evt, float tpf)!

•  Callback only gives the named input mapping	

TWi Oct 13	
10/14/2013	

Input Example	

TWi Oct 13	

InputExample.java	

10/14/2013	

Navigation example	

TWi Oct 13	

NavigationExample.java	

10/14/2013	

Cameras	

Cameras	

•  Camera (com.jme3.renderer)	

–  Purely mathematical	

–  View and projection matrix	

–  Frustrum	

–  Location and rotation	

–  Forward, up, and right	

 Direction vectors	

–  Used by camera implementations	

–  Culling	

TWi Oct 13	

Source: Wikipedia	

10/14/2013	

Cameras	

•  Various camera implementations:	

–  FlyByCamera	

•  First person controls	

–  ChaseCamera	

•  Third person controls, follows with a smooth transition	

–  CameraNode	

•  Third person, fixed distance	

–  (ExamineCamera)	

TWi Oct 13	
10/14/2013	

Camera Example	

TWi Oct 13	

CameraTypesExample.java	

10/14/2013	

Picking	

Picking	

•  Ray Casting	

•  Intersection with Bounding Volumes	

– Axis Aligned Bounding Box	

– BoundingSphere	

– Oriented Bounding Box	

– Capsule	

•  If collision with BV, per triangle
intersection	

TWi Oct 13	
10/14/2013	

Picking	

•  Construct a ray with a from location and a direction	

!Ray ray = new Ray(Vector3f.ZERO, Vector3f.NEGATIVE_Z);!

•  CollisionResults stores the result from the pick operation	

!CollisionResults results = new CollisionResults();!

•  Check collision with subgraph	

!subgraphToPick.collideWith(ray, results);!

•  Get the collision	

!CollisionResult closest = results.getClosestCollision();!
!results.getFarthestCollision();!

!

!public Iterator<CollisionResult> iterator()!

TWi Oct 13	
10/14/2013	

Picking	

•  The pick result contains detailed
information	

– Geometry, mesh and triangle	

– Point, normal and distance	

•  Results can be sorted	

•  Note: jME counts intersection with front

and back of a mesh as two hits	

TWi Oct 13	
10/14/2013	

Picking	

•  Pickable/Collidable objects must implement
Collidable interface	

– Spatial, Node and Geometry	

•  BV can be used to check collision between
shapes	

– Much cheaper than physics collision

(simulation)	

TWi Oct 13	
10/14/2013	

Picking Example	

TWi Oct 13	

PickingExample.java	

10/14/2013	

Controls	

Controls	

•  Control contains code/behavior specific to
individual Spatials or types of spatials	

•  Scope of a Control is limited to the Spatial (and its
subgraph)	

•  One Spatial can be influenced by several Controls	

•  Each Spatial needs its own instance of the Control	

•  Controls can be saved in the .j3o file together with

a Spatial.	

TWi Oct 13	
10/14/2013	

TWi Oct 13	

Controls	

•  Each Control has:	

–  Constructor, cannot modify the spatial here	

–  A setSpatial(Spatial ..) method, where you can do initial

modifications to the spatial	

–  Its own update() loop that hooks into simpleUpdate() 	

–  Access to other controls added to the spatial	

•  Controls move blocks of code out of
the simpleUpdate() loop	

•  Create a control by either extending AbstractControl or
implement Control interface	

10/14/2013	

Custom Control Example	

Public class MyControl extends AbstractControl{!
 public MyControl(Params...){!
 }!

!
 public void setSpatial(Spatial spatial){!
 super.setSpatial(spatial);!
 // control specification initializing code here !
 }!
!

 public void controlUpdate(float tpf){!
 // update code here!
 }!
!
 public Control cloneForSpatial(Spatial spatial){ ... }!
 public void controlRender(RenderManager rm, ViewPort vp){ ... }!

 public void read(JmeImporter im) throws IOException{ ... }!
 public void write(JmeExporter ex) throws IOException{ ... }!
}!

TWi Oct 13	
10/14/2013	

Simple Control Example	

TWi Oct 13	

RotationWithControl.java	

10/14/2013	

Application States	

Application States	

•  Separation of game logic	

•  Where Controls enabled logic specific to

spatials	

•  Application States enable logic specific to

parts of the application / game	

•  Application States have access to the whole

Application	

TWi Oct 13	
10/14/2013	

TWi Oct 13	

Application States	

•  Application State has various methods:	

–  initialize(AppStateManager stateManager, Application
app)	

–  setEnabled(boolean enabled)	

–  stateAttached(AppStateManager stateManager)	

–  stateDetached(AppStateManager stateManager)	

–  update(float tpf)	

–  postRender()	

–  cleanup()	

–  ++	

10/14/2013	

Application State Example	

TWi Oct 13	

AppStateExample.java	

10/14/2013	

