
Content
Building Geometry	

Appearance	

Lights	

Model Loaders	

Building Geometry	

•  A Geometry represents a 3D object:	

•  Mesh:	

– The form or structure of a shape	

•  Material:	

– The color, transparency, and shading of a
shape.	

TWi Sept 13	

30/09/2013	

Geometry class methods	

•  Methods on Geometry set mesh and
material attributes	

!Geometry(String name)!
!Geometry(String name, Mesh mesh)!

!
!public void setMesh(Mesh mesh)!
!public void setMaterial(Material material)!

TWi Sept 13	

30/09/2013	

Defining Mesh for Geometry	

•  Three choices when creating mesh for geometry:	

1.  Built in shapes (Box, Sphere, etc.)	

2.  Load 3D models (created in 3ds max, blender, etc.)	

3.  Create mesh programatically	

TWi Sept 13	

30/09/2013	

Coordinate System	

•  3D coordinates are given in a right-handed
coordinate system	

X = left-to-right	

Y = bottom-to-top	

Z = back-to-front	

TWi Sept 13	

30/09/2013	

Coordinate Order	

•  Polygons have a front and back:	

– By default, only the front side of a polygon is

rendered	

– A polygon's winding order determines which

side is the front	

– Most polygons only need one side rendered	

– You can turn on double-sided rendering, at a

performance cost	

TWi Sept 13	

30/09/2013	

Using Coordinate Order	

•  jME is uses a right-handed coordinate
system	

– The front of the polygon is determined by the

ordering of the vertices	

– Counterclockwise	

TWi Sept 13	

30/09/2013	

Defining Vertices	

•  A vertex describes a polygon and contains:	

– A 3D coordinate	

– A color	

– A texture coordinate	

– A lighting normal vector	

•  Only the 3D coordinate in a vertex is
required, the rest are optional	

TWi Sept 13	

30/09/2013	

Defining Vertices	

•  A vertex normal defines surface information
for lighting	

– But the coordinate winding order defines the

polygon's front and back	

•  If you want to light your geometry, you

must specify vertex lighting normals	

– Lighting normals must be unit length	

TWi Sept 13	

30/09/2013	

Building Meshes	

•  jME supports three types of geometric primitives:	

–  Points	

–  Lines	

–  Triangles	

•  The Mesh class have several derived subclasses that create specific
shapes:	

–  Boxes, cylinders, spheres	

–  Domes, pyramid, torus	

–  Surfaces or curves	

TWi Sept 13	

30/09/2013	

Defining vertices	

•  Non-Indexed	

–  Define vertices in singles, pairs or triples to build points, lines, and triangles one at
a time.	

–  Redundant coordinates, lighting normals, colors, and texture coordinates	

•  Indexed	

–  Indices are used along with the lists of coordinates, lighting normals, color and

texture coordinates	

–  Indices select which coordinates to use from each list	

–  Indices are also used for lighting normals, colors, and texture coordinates	

–  For surfaces, the same vertices are reused for adjacent lines and triangles, providing

an efficient use of vertex information	

–  No redundant coordinates in indexed geometry	

TWi Sept 13	

30/09/2013	

Building Meshes	

•  Non-indexed:	

Vector3f[] vertices = new Vector3f[]{!

!new Vector3f(0, 1, 0), // red triangle!
!new Vector3f(0, 0, 0),!
!new Vector3f(1, 0, 0),!

!new Vector3f(1, 0, 0), // green triangle!
!new Vector3f(1, 1, 0),!
!new Vector3f(0, 1, 0),!

};!

•  Indexed:	

Vector3f[] vertices = new Vector3f[]{ ! !int[] indices = new int[]{!

!new Vector3f(0, 0, 0), ! ! !2, 0, 1, //red tri!
!new Vector3f(1, 0, 0), ! ! !1, 3, 2, //green tri!
!new Vector3f(0, 1, 0), ! !};!

!new Vector3f(1, 1, 0),!
};!

TWi Sept 13	

30/09/2013	

Building different types of meshes	

•  There are 8 different ways to represent the vertex data in the mesh:	

- Points!
- Lines!
- LineStrip!
- LineLoop!
- Triangles!
- TriangleStrip!
- TriangleFan!
- (Hybrid)!

TWi Sept 13	

30/09/2013	

Setting mesh data	

•  Mesh data is set through native buffers	

void setBuffer(VertexBuffer.Type type, int components, java.nio.ByteBuffer buf);!

void setBuffer(VertexBuffer.Type type, int components, java.nio.FloatBuffer buf);!
void setBuffer(VertexBuffer.Type type, int components, java.nio.IntBuffer buf);!

•  VertexBuffer types:	

-  Position!
-  Normal!
-  Index!
-  Color!
-  TexCoord!
-  +++!

TWi Sept 13	

30/09/2013	

Mesh Example	

TWi Sept 13	

MeshExample.java	

30/09/2013	

Dynamic Mesh Example	

TWi Sept 13	

MeshExample.java	

30/09/2013	

Render Modes Example	

TWi Sept 13	

BoxRenderModes.java	

30/09/2013	

Appearance	

Appearance	

•  How to control how jME renders an object?	

– No Fixed Function Pipeline (FFP)	

–  jME is fully shader based	

– Features built in shaders that "mimics" FFP	

– You can do almost anything you want	

TWi Sept 13	

30/09/2013	

Fixed Function Pipeline	

TWi Sept 13	

30/09/2013	

Source: krhonos.org	

Shaders	

•  What is a shader?	

– Vertex Shader	

– Tesselation Shader	

– Geometry Shader	

– Fragment Shader	

•  GLSL	

•  Other formats	

– HLSL, CG	

TWi Sept 13	

30/09/2013	

Programmable Pipeline	

TWi Sept 13	

30/09/2013	

Sources: krhonos.org and opengl.org	

jME and Shaders	

•  Shaders are encapsulated into Material
Definitions	

•  .j3md – files	

•  You don’t need to master shaders, a
discipline in itself	

TWi Sept 13	

30/09/2013	

Materials	

•  Materials control how jME renders geometry.	

•  Materials are created/loaded from a Material

Definition file (.j3md).	

•  This means you have to load Material Definitions!	

•  Rendering specifications are set on the Material

object.	

•  The rendering specifications available in the

material depends on the Material Definition. 	

•  All geometry must have a material set!	

TWi Sept 13	

30/09/2013	

Material Attributes	

•  We will focus on two Material Definitons that
mimic FFP, in the jME3-core.	

jME3-core.jar/Common/MatDefs/Misc/Unshaded.j3md!
!
jME3-core.jar/Common/MatDefs/Light/Lighting.j3md!
!

•  More on these shortly!	

!

TWi Sept 13	

30/09/2013	

TWi Sept 13	

Material Attributes	

•  Lighting Material controls:	

–  Ambient, diffuse and specular colour	

–  Shininess	

–  Textures	

–  +++	

30/09/2013	

TWi Sept 13	

Material example code	

•  Create material for setting shape colours	

Material mat = new Material(assetManager, "Common/MatDefs/Light/

Lighting.j3md");!
mat.setBoolean("UseMaterialColors", true);!
mat.setColor("Ambient", new ColorRGBA(0.3f, 0.3f, 0.3f, 1.0f));!
mat.setColor("Diffuse", new ColorRGBA (0.5f, 0.5f, 0.5f, 1.0f));!

mat.setColor("GlowColor", new ColorRGBA (0.0f, 0.0f, 0.0f, 0.0f));!
mat.setColor("Specular", new ColorRGBA (0.8f, 0.8f, 0.8f, 1.0f));!
mat.setFloat("Shininess", 64.0f);	

•  Set the material to the Geometry.	

geom.setMaterial(mat);!

30/09/2013	

Material Attributes	

•  Material definitions are located in jME3-core.jar!

!"Common/MatDefs/*"!
•  Material editor in the jME SDK	

•  Overview over the Material Definition

Properties on the wiki:
http://jmonkeyengine.org/wiki/doku.php/
jme3:advanced:materials_overview	

TWi Sept 13	

30/09/2013	

Unshaded and Lighting material example	

TWi Sept 13	

MaterialDifference.java	

30/09/2013	

TWi Sept 13	

Transparency	

•  Transparency controls	

–  The amount of transparency depends on alpha value	

–  Alpa value [0.0f, 1.0f]	

–  Transparency modes	

30/09/2013	

Transparency (blend) Modes	

source = value from fragment shader 	

destination = value from framebuffer	

• Opaque (no blend mode)	

• Alpha (Result = Source Alpha * Source Color + (1 - Source Alpha) * Dest Color)	

• Additive (Result = Source Color + Destination Color)	

• Alpha additive (Result = (Source Alpha * Source Color) + Dest Color)	

• Modulate (Result = Source Color * Dest Color)	

• ModulateX2 (Result = 2 * Source Color * Dest Color)	

• PremultAlpha (Result = Source Color + (Dest Color * (1 - Source Alpha)))	

• Color (Result = Source Color + (1 - Source Color) * Dest Color)	

TWi Sept 13	

30/09/2013	

Transparency example	

TWi Sept 13	

TransparencyExample.java 	

30/09/2013	

Different Materials Example	

TWi Sept 13	

MaterialExample.java	

30/09/2013	

Lights	

Setting lights in a scene	

TWi Sept 13	

Lights in jME 	

	

•  jME offers 4 different light types for
lighting the scene.	

– Ambient light	

– Directional light	

– Point light	

– Spot light	

•  Or you can write your own equation in a
shader	

30/09/2013	

TWi Sept 13	

Light methods	

•  There are some methods that are common
for all light-types	

–  setEnable(boolean OnOff), turn lights on off	

– Color, setColor	

– Volume and scope which controls which shapes

that will be lit up.	

30/09/2013	

Ambient Light	

•  General brightness/color of the objects	

!
AmbientLight al = new AmbientLight();
al.setColor(ColorRGBA.White.mult(0.3f));
rootNode.addLight(al);!

TWi Sept 13	

30/09/2013	

Directional Light	

•  Light in a direction, infinitely far away (the sun)	

DirectionalLight sun = new DirectionalLight();
sun.setColor(ColorRGBA.White); !
sun.setDirection(new Vector3f(-0.5f, -0.5f,
-0.5f).normalizeLocal()); !
rootNode.addLight(sun);!

TWi Sept 13	

30/09/2013	

Point Light	

•  All directions, decreasing intensity (almost like a "light bulb")	

!
PointLight lamp_light = new PointLight();
lamp_light.setColor(ColorRGBA.Yellow);
lamp_light.setRadius(4f); !
lamp_light.setPosition(new Vector3f(0, 1, 0));
rootNode.addLight(lamp_light);!

TWi Sept 13	

30/09/2013	

Spot Light	

•  Direction, position, and two angles (flashlight)	

SpotLight spot = new SpotLight();
spot.setSpotRange(100f); !
spot.setSpotInnerAngle(15f * FastMath.DEG_TO_RAD!
spot.setSpotOuterAngle(35f * FastMath.DEG_TO_RAD);
spot.setColor(ColorRGBA.White); !
spot.setPosition(cam.getLocation());!
spot.setDirection(cam.getDirection());
rootNode.addLight(spot);!

TWi Sept 13	

30/09/2013	

TWi Sept 13	

Lights and Scope	

•  Every Spatial has a list of lights	

•  The influence of lights are limited to the subgraph of the

Spatial 	

•  Add lights that should influence whole scene directly to the

root	

•  Add lights that only influence parts at the topmost Spatial	

30/09/2013	

Light example	

TWi Sept 13	

LightExample.java 	

30/09/2013	

Model Loaders	

Use of loaders	

TWi Sept 13	

Loaders	

•  Oficially there only exists loaders for some file formats	

–  Ogre DotScene (animated objects, scenes)	

–  Ogre Mesh XML 	

–  Wavefront OBJ (static objects, scenes)	

•  Other unofficial loaders exist (might not be up to date)	

–  COLLADA	

–  MD5	

•  jME want to focus officially supported loaders to only a
few	

•  We will use Ogre DotScene	

30/09/2013	

Ogre DotScene	

•  Standardized XML file format	

•  Describes a scene	

– Meshes	

– Materials	

– Lights	

– Level of detail	

•  Animation	

TWi Sept 13	

30/09/2013	

Ogre DotScene	

•  Meshes are exported as .mesh.xml!
•  Materials as .material!
•  Animations as .skeleton.xml!
•  Scenes as .scene!

•  The .scene file "binds things together"	

	

For example: Mesh <-> Material!

TWi Sept 13	

30/09/2013	

Converting models to Ogre
DotScene	

•  Blender 2.62 (free) or Maya	

•  Import model, any format the editor

supports	

•  Export model as Ogre DotScene	

•  See guide for installing and setting up

Blender with export script correctly	

•  Why doesn’t the loaded model work?	

TWi Sept 13	

30/09/2013	

Using the Ogre DotScene Loader	

•  Extracts jME spatials from the scene file	

–  Geometry	

–  Lights	

–  Skeleton	

–  Animations	

•  Traverse the loaded graph to access named objects and manipulate
them	

•  Add to scene graph	

•  Topmost node in loaded subgraph is usually a node	

TWi Sept 13	

30/09/2013	

“Debugging” loaded models	

Spatial model = assetManager.loadModel("models/standing_man.scene");!
!
model.depthFirstTraversal(new SceneGraphVisitor() {!

 @Override!
 public void visit(Spatial spatial) {!
 if (spatial instanceof Geometry) {!
 // turn off face culling.!
 ((Geometry)spatial).getMaterial().getAdditionalRenderState().!
 setFaceCullMode(RenderState.FaceCullMode.Off);!

 } !
 }!
});!
!
rootNode.attachChild(model);!

TWi Sept 13	

30/09/2013	

jME3 specific formats	

•  Binary 3D model or scene (.j3o)	

•  Optimized format	

•  Convert them using the jME SDK	

–  (you don’t have to do this)	

•  Use this for release builds	

•  Load models during development	

TWi Sept 13	

30/09/2013	

Loader Example	

TWi Sept 13	

LoaderExample.java	

30/09/2013	

